Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102831, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277268

RESUMO

We present a protocol for the rapid postmortem bedside procurement of selected tissue samples using an endoscopic endonasal surgical technique that we adapted from skull base surgery. We describe steps for the postmortem collection of blood, cerebrospinal fluid, a nasopharyngeal swab, and tissue samples; the clean-up procedure; and the initial processing and storage of the samples. This protocol was validated with tissue samples procured postmortem from COVID-19 patients and can be applied in another emerging infectious disease. For complete details on the use and execution of this protocol, please refer to Khan et al. (2021)1 and Khan et al. (2022).2.


Assuntos
Procedimentos de Cirurgia Plástica , Humanos , Base do Crânio/cirurgia , Endoscopia/métodos , Mucosa Olfatória/cirurgia , Lobo Frontal/cirurgia
2.
J Virol Methods ; 323: 114848, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944670

RESUMO

BACKGROUND: Transmission of SARS-CoV-2 from donor to recipient is a clinically relevant risk for developing severe COVID-19 after lung transplantation (LTx). This risk of iatrogenic transmission can be reduced by timely detection of viral RNA or antigen in samples of bronchoalveolar lavage (BAL) fluid obtained at the time of lung procurement. We aimed to retrospectively evaluate the detection of SARS-CoV-2 RNA or antigen in BAL fluid samples using three point-of-care tests (POCTs). METHODS: BAL fluid samples came from patients hospitalized in an intensive care unit during the COVID-19 pandemic. These pandemic samples were scored as positive or negative for SARS-CoV-2 by a RT-qPCR comparator assay for orf1ab. Three commercially available POCTs were then evaluated: cobas SARS-CoV-2 & Influenza A/B assay with the cobas Liat RT-qPCR system (Roche Diagnostics), ID NOW COVID-19 and COVID-19 2.0 (Abbott), and SARS-CoV-2 Rapid Antigen Test (RAT) (Roche Diagnostics). Samples from the pre-pandemic era served as negative controls. RESULTS: We analyzed a total of 98 BAL fluid samples, each from a different patient: 58 positive pandemic samples (orf1ab Ct<38), 20 putatively negative pandemic samples (orf1ab Ct≥38), and 20 pre-pandemic samples. Univariate logistic regression shows that the probability of detection was highest for cobas Liat, followed by ID NOW, and then RAT. Of clinical relevance, cobas Liat detected SARS-CoV-2 RNA in 30 of the 31 positive pandemic samples that were collected within 10 days after RT-qPCR diagnosis of SARS-CoV-2 infection. None of the 20 pre-pandemic samples had a false-positive result for any POCT. CONCLUSIONS: POCTs enable the detection of SARS-CoV-2 RNA or antigen in BAL fluid samples and may provide additional information to decide if donor lungs are suitable for transplantation. Detection of respiratory pathogens with POCTs at the time of donor lung procurement is a potential strategy to increase safety in LTx by preventing iatrogenic transmission and severe postoperative infections.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , RNA Viral/genética , Estudos Retrospectivos , Pandemias , Líquido da Lavagem Broncoalveolar , Testes Imediatos , Antígenos Virais/análise , Doença Iatrogênica , Sensibilidade e Especificidade
3.
EBioMedicine ; 92: 104608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37224768

RESUMO

BACKGROUND: SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS: A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS: We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION: Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING: Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.


Assuntos
COVID-19 , Humanos , Pulmão , Estudos Prospectivos , RNA Viral , SARS-CoV-2 , RNA Subgenômico
4.
Neuron ; 110(23): 3919-3935.e6, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36446381

RESUMO

Can SARS-CoV-2 hitchhike on the olfactory projection and take a direct and short route from the nose into the brain? We reasoned that the neurotropic or neuroinvasive capacity of the virus, if it exists, should be most easily detectable in individuals who died in an acute phase of the infection. Here, we applied a postmortem bedside surgical procedure for the rapid procurement of tissue, blood, and cerebrospinal fluid samples from deceased COVID-19 patients infected with the Delta, Omicron BA.1, or Omicron BA.2 variants. Confocal imaging of sections stained with fluorescence RNAscope and immunohistochemistry afforded the light-microscopic visualization of extracellular SARS-CoV-2 virions in tissues. We failed to find evidence for viral invasion of the parenchyma of the olfactory bulb and the frontal lobe of the brain. Instead, we identified anatomical barriers at vulnerable interfaces, exemplified by perineurial olfactory nerve fibroblasts enwrapping olfactory axon fascicles in the lamina propria of the olfactory mucosa.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Bulbo Olfatório , Olfato , Encéfalo
5.
Lancet Respir Med ; 10(12): 1147-1159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029799

RESUMO

BACKGROUND: Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS: In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1ß, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS: Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION: Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING: Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.


Assuntos
Aspergilose , COVID-19 , Influenza Humana , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Humanos , COVID-19/complicações , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , SARS-CoV-2 , Antifúngicos/uso terapêutico , Estudos Retrospectivos , RNA Viral , Aspergilose Pulmonar/complicações , Pulmão/patologia , Imunidade Inata , Aspergilose Pulmonar Invasiva/complicações
6.
Immun Inflamm Dis ; 10(4): e603, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35349750

RESUMO

Point-of-care tests may play a valuable role in reducing the risk of donor-derived SARS-CoV-2 transmission in lung transplantation.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pulmão , Tórax
7.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34798069

RESUMO

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Assuntos
Autopsia/métodos , COVID-19/mortalidade , COVID-19/virologia , Bulbo Olfatório/virologia , Mucosa Olfatória/virologia , Mucosa Respiratória/virologia , Idoso , Anosmia , COVID-19/fisiopatologia , Endoscopia/métodos , Feminino , Glucuronosiltransferase/biossíntese , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Transtornos do Olfato , Neurônios Receptores Olfatórios/metabolismo , Sistema Respiratório , SARS-CoV-2 , Olfato
8.
Neuron ; 109(15): 2469-2484.e7, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34186026

RESUMO

The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.


Assuntos
Reação de Fuga/fisiologia , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Animais , Sulfeto de Hidrogênio , Camundongos , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia
10.
Cell Rep ; 30(12): 4220-4234.e5, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209480

RESUMO

A mature olfactory sensory neuron (OSN) of the main olfactory epithelium (MOE) typically expresses one allele of one odorant receptor (OR) gene. It is widely thought that the great majority of the 1,141 intact mouse OR genes are expressed in one of four MOE zones (or bands or stripes), which are largely non-overlapping. Here, we develop a multiplex method to map, in 3D and MOE-wide, the expression areas of multiple OR genes in individual, non-genetically modified mice by three-color fluorescence in situ hybridization, semi-automated image segmentation, and 3D reconstruction. We classify the expression areas of 68 OR genes into 9 zones. These zones are highly overlapping and strikingly complex when viewed in 3D reconstructions. There could well be more zones. We propose that zones reflect distinct OSN types that are each restricted in their choice to a subset of the OR gene repertoire.


Assuntos
Mucosa Olfatória/metabolismo , Receptores Odorantes/genética , Animais , Axônios/metabolismo , Regulação da Expressão Gênica , Loci Gênicos , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Mucosa Olfatória/inervação
11.
BMC Genomics ; 21(1): 196, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126975

RESUMO

BACKGROUND: Olfactory receptor (OR) genes are the largest multi-gene family in the mammalian genome, with 874 in human and 1483 loci in mouse (including pseudogenes). The expansion of the OR gene repertoire has occurred through numerous duplication events followed by diversification, resulting in a large number of highly similar paralogous genes. These characteristics have made the annotation of the complete OR gene repertoire a complex task. Most OR genes have been predicted in silico and are typically annotated as intronless coding sequences. RESULTS: Here we have developed an expert curation pipeline to analyse and annotate every OR gene in the human and mouse reference genomes. By combining evidence from structural features, evolutionary conservation and experimental data, we have unified the annotation of these gene families, and have systematically determined the protein-coding potential of each locus. We have defined the non-coding regions of many OR genes, enabling us to generate full-length transcript models. We found that 13 human and 41 mouse OR loci have coding sequences that are split across two exons. These split OR genes are conserved across mammals, and are expressed at the same level as protein-coding OR genes with an intronless coding region. Our findings challenge the long-standing and widespread notion that the coding region of a vertebrate OR gene is contained within a single exon. CONCLUSIONS: This work provides the most comprehensive curation effort of the human and mouse OR gene repertoires to date. The complete annotation has been integrated into the GENCODE reference gene set, for immediate availability to the research community.


Assuntos
Sequência Conservada , Éxons/genética , Locos de Características Quantitativas , Receptores Odorantes/genética , Animais , Curadoria de Dados/métodos , Bases de Dados Genéticas , Loci Gênicos , Genoma Humano , Humanos , Camundongos , Pseudogenes
12.
Nat Commun ; 10(1): 4889, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653840

RESUMO

Innate immune chemoreceptors of the formyl peptide receptor (Fpr) family are expressed by vomeronasal sensory neurons (VSNs) in the accessory olfactory system. Their biological function and coding mechanisms remain unknown. We show that mouse Fpr3 (Fpr-rs1) recognizes the core peptide motif f-MKKFRW that is predominantly present in the signal sequence of the bacterial protein MgrB, a highly conserved regulator of virulence and antibiotic resistance in Enterobacteriaceae. MgrB peptide can be produced and secreted by bacteria, and is selectively recognized by a subset of VSNs. Exposure to the peptide also stimulates VSNs in freely behaving mice and drives innate avoidance. Our data shows that Fpr3 is required for neuronal detection and avoidance of peptides derived from a conserved master virulence regulator of enteric bacteria.


Assuntos
Aprendizagem da Esquiva , Enterobacteriaceae/imunologia , Proteínas de Escherichia coli/imunologia , Proteínas de Membrana/metabolismo , Receptores de Formil Peptídeo/metabolismo , Células Receptoras Sensoriais/imunologia , Órgão Vomeronasal/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Receptores de Formil Peptídeo/agonistas , Receptores de Formil Peptídeo/genética , Órgão Vomeronasal/citologia
13.
Sci Adv ; 5(7): eaax0396, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31392275

RESUMO

The mammalian olfactory system displays species-specific adaptations to different ecological niches. To investigate the evolutionary dynamics of olfactory sensory neuron (OSN) subtypes across mammalian evolution, we applied RNA sequencing of whole olfactory mucosa samples from mouse, rat, dog, marmoset, macaque, and human. We find that OSN subtypes, representative of all known mouse chemosensory receptor gene families, are present in all analyzed species. Further, we show that OSN subtypes expressing canonical olfactory receptors are distributed across a large dynamic range and that homologous subtypes can be either highly abundant across all species or species/order specific. Highly abundant mouse and human OSN subtypes detect odorants with similar sensory profiles and sense ecologically relevant odorants, such as mouse semiochemicals or human key food odorants. Together, our results allow for a better understanding of the evolution of mammalian olfaction in mammals and provide insights into the possible functions of highly abundant OSN subtypes.


Assuntos
Evolução Biológica , Alimentos , Mamíferos/genética , Odorantes , Mucosa Olfatória/metabolismo , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica , Humanos , Ligantes , Masculino , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
14.
Genesis ; 57(6): e23295, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31001916

RESUMO

Spermatogonial stem cells (SSCs) are adult stem cells that are slowly cycling and self-renewing. The pool of SSCs generates very large numbers of male gametes throughout the life of the individual. SSCs can be cultured in vitro for long periods of time, and established SSC lines can be manipulated genetically. Upon transplantation into the testes of infertile mice, long-term cultured mouse SSCs can differentiate into fertile spermatozoa, which can give rise to live offspring. Here, we show that the testicular soma of mice with a conditional knockout (conKO) in the X-linked gene Tsc22d3 supports spermatogenesis and germline transmission from cultured mouse SSCs upon transplantation. Infertile males were produced by crossing homozygous Tsc22d3 floxed females with homozygous ROSA26-Cre males. We obtained 96 live offspring from six long-term cultured SSC lines with the aid of intracytoplasmic sperm injection. We advocate the further optimization of Tsc22d3-conKO males as recipients for testis transplantation of SSC lines.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Transplante de Células-Tronco/métodos , Fatores de Transcrição/genética , Células-Tronco Germinativas Adultas/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Mutação em Linhagem Germinativa , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogênese/genética , Espermatogônias/fisiologia , Espermatozoides/crescimento & desenvolvimento , Testículo/metabolismo , Fatores de Transcrição/metabolismo
16.
Eur J Neurosci ; 47(7): 887-900, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29465786

RESUMO

The mouse vomeronasal organ is specialized in the detection of pheromones. Vomeronasal sensory neurons (VSNs) express chemosensory receptors of two large gene repertoires, V1R and V2R, which encode G-protein-coupled receptors. Phylogenetically, four families of V2R genes can be discerned as follows: A, B, C, and D. VSNs located in the basal layer of the vomeronasal epithelium coordinately coexpress V2R genes from two families: Approximately half of basal VSNs coexpress Vmn2r1 of family C with a single V2R gene of family A8-10, B, or D ('C1 type of V2Rs'), and the other half coexpress Vmn2r2 through Vmn2r7 of family C with a single V2R gene of family A1-6 ('C2 type V2Rs'). The regulatory mechanisms of the coordinated coexpression of V2Rs from two families remain poorly understood. Here, we have generated two mouse strains carrying a knockout mutation in Vmn2r1 by gene targeting in embryonic stem cells. These mutations cause a differential decrease in the numbers of VSNs expressing a given C1 type of V2R. There is no compensatory expression of Vmn2r2 through Vmn2r7. VSN axons coalesce into glomeruli in the appropriate region of the accessory olfactory bulb in the absence of Vmn2r1. Gene expression profiling by NanoString reveals a differential and graded decrease in the expression levels across C1 type of V2Rs. There is no change in the expression levels of C2 type of V2Rs, with two exceptions that we reclassified as C1 type. Thus, there appears to be a fixed probability of gene choice for a given C2 type of V2R.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Especificidade da Espécie
17.
Mol Cell Neurosci ; 88: 138-147, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407371

RESUMO

In the mouse, most mature olfactory sensory neurons (OSNs) express one allele of one gene from the repertoire of ~1100 odorant receptor (OR) genes, which encode G-protein coupled receptors (GPCRs). Axons of OSNs that express a given OR coalesce into homogeneous glomeruli, which reside at conserved positions in the olfactory bulb. ORs are intimately involved in ensuring the expression of one OR per OSN and the coalescence of OSN axons into glomeruli. But the mechanisms whereby ORs accomplish these diverse functions remain poorly understood. An experimental approach that has been informative is to substitute an OR genetically with another GPCR that is normally not expressed in OSNs, in order to determine in which aspects this GPCR can serve as surrogate OR in mouse OSNs. Thus far only the ß2-adrenergic receptor (ß2AR, Ardb2) has been shown to be able to serve as surrogate OR in OSNs; the ß2AR could substitute for the M71 OR in all aspects examined. Can other non-olfactory GPCRs function equally well as surrogate ORs in OSNs? Here, we have generated and characterized two novel gene-targeted mouse strains in which the mouse melanocortin 4 receptor (Mc4r) or the mouse dopamine receptor D1 (Drd1a) is coexpressed with tauGFP in OSNs that express the OR locus M71. These alleles and strains are abbreviated as Mc4r → M71-GFP and Drd1a → M71-GFP. We detected strong Mc4r or Drd1a immunoreactivity in axons and dendritic knobs and cilia of OSNs that express Mc4r or Drd1a from the M71 locus. These OSNs responded physiologically to cognate agonists for Mc4r (Ro27-3225) or Drd1a (SKF81297), and not to the M71 ligand acetophenone. Axons of OSNs expressing Mc4r → M71-GFP coalesced into glomeruli. Axons of OSNs expressing Drd1a → M71-GFP converged onto restricted areas of the olfactory bulb but did not coalesce into glomeruli. Thus, OR functions in OSNs can be substituted by Mc4r or Drd1a, but not as well as by ß2AR. We attribute the weak performance of Drd1a as surrogate OR to poor OSN maturation.


Assuntos
Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Axônios/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Receptores Odorantes/genética
18.
Brain ; 140(10): 2722-2736, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969383

RESUMO

Olfactory dysfunction is common in Parkinson's disease and is an early symptom, but its pathogenesis remains poorly understood. Hindering progress in our mechanistic understanding of olfactory dysfunction in Parkinson's disease is the paucity of literature about the human olfactory bulb, both from normal and Parkinson's disease cases. Qualitatively it is well established that the neat arrangement of the glomerular array seen in the mouse olfactory bulb is missing in humans. But rigorous quantitative approaches to describe and compare the thousands of glomeruli in the human olfactory bulb are not available. Here we report a quantitative approach to describe the glomerular component of the human olfactory bulb, and its application to draw statistical comparisons between olfactory bulbs from normal and Parkinson's disease cases. We subjected horizontal 10 µm sections of olfactory bulbs from six normal and five Parkinson's disease cases to fluorescence immunohistochemistry with antibodies against vesicular glutamate transporter-2 and neural cell adhesion molecule. We scanned the immunostained sections with a fluorescence slide scanner, segmented the glomeruli, and generated 3D reconstructions of whole olfactory bulbs. We document the occurrence of atypical glomerular morphologies and glomerular-like structures deep in the olfactory bulb, both in normal and Parkinson's disease cases. We define a novel and objective parameter: the global glomerular voxel volume, which is the total volume of all voxels that are classified immunohistochemically as glomerular. We find that the global glomerular voxel volume in Parkinson's disease cases is half that of normal cases. The distribution of glomerular voxels along the dorsal-ventral dimension of the olfactory bulb in these series of horizontal sections is significantly altered in Parkinson's disease cases: whereas most glomerular voxels reside within the ventral half of olfactory bulbs from normal cases, glomerular voxels are more evenly spread among the ventral and dorsal halves of olfactory bulbs from Parkinson's disease cases. These quantitative whole-olfactory bulb analyses indicate a predominantly ventral deficit in the glomerular component in Parkinson's disease, consistent with the olfactory vector hypothesis for the pathogenesis of this neurodegenerative disease. The distribution of serine 129-phosphorylated α-synuclein immunoreactive voxels correlates with that of glomerular voxels. The higher the serine 129-phosphorylated α-synuclein load of an olfactory bulb from a Parkinson's disease case, the lower the global glomerular voxel volume. Our rigorous quantitative approach to the whole olfactory bulb will help understand the anatomy and histology of the normal human olfactory bulb and its pathological alterations in Parkinson's disease.


Assuntos
Transtornos do Olfato/etiologia , Bulbo Olfatório/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Moléculas de Adesão de Célula Nervosa/metabolismo , Bulbo Olfatório/metabolismo , Tirosina 3-Mono-Oxigenase , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , alfa-Sinucleína/metabolismo
19.
Stem Cell Reports ; 9(4): 1062-1070, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28919262

RESUMO

Extraembryonic endoderm stem (XEN) cell lines can be derived and maintained in vitro and reflect the primitive endoderm lineage. Platelet-derived growth factor receptor alpha (PDGFRA) is thought to be essential for the derivation and maintenance of mouse XEN cell lines. Here, we have re-evaluated this requirement for PDGFRA. We derived multiple PDGFRA-deficient XEN cell lines from postimplantation and preimplantation embryos of a PDGFRA-GFP knockout strain. We also converted PDGFRA-deficient embryonic stem cell lines into XEN cell lines chemically by transient culturing with retinoic acid and Activin A. We confirmed the XEN profile of our 12 PDGFRA-deficient cell lines by immunofluorescence with various markers, by NanoString gene expression analyses, and by their contribution to the extraembryonic endoderm of chimeric embryos produced by injecting these cells into blastocysts. Thus, PDGFRA is not essential for the derivation and maintenance of XEN cell lines.


Assuntos
Diferenciação Celular/genética , Autorrenovação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Linhagem Celular , Análise por Conglomerados , Embrião de Mamíferos/citologia , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genes Reporter , Genótipo , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
20.
Neuroscience ; 344: 167-177, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28057532

RESUMO

In the mouse, odorant receptor proteins (ORs) are G-protein-coupled receptors expressed in mature olfactory sensory neurons (OSNs) of the main olfactory epithelium (MOE). ORs mediate odorant reception at the level of the OSN cilia. Most of the ∼1100 OR genes in the mouse genome are expressed, at the RNA level, in mature OSNs. The literature on antibodies against ORs is limited, and most reports are with antibodies that are not commercially available. Here we have screened 40 commercial antibodies against human and mouse ORs by immunofluorescence staining of coronal cryosections of the MOE of 21-day-old C57BL/6J mice. Various methods of antigen retrieval were tested. Of the 19 antibodies raised against human ORs, three yielded a consistent immunoreactive signal in the mouse MOE; of these three, two appeared to cross react against one or more, unknown, mouse ORs. Of the 21 antibodies raised against mouse ORs, six yielded a consistent immunoreactive signal in the mouse MOE; of these six, two also stained specific glomeruli in the olfactory bulb. Antibody specificity could be validated with gene-targeted mouse strains in the case of three ORs. The number of OSNs immunoreactive for the MOR28/Olfr1507 antibody is greater in C57BL/6J than in 129S6/SvEvTac wild-type mice. Taken together, our results are encouraging: 20-30% of these commercially available antibodies are informative in immunohistochemical analyses of the mouse MOE. The commercial availability of these antibodies should facilitate the study of OR proteins in the MOE and the olfactory bulb, and the replicability of results in the literature.


Assuntos
Bulbo Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Receptores Odorantes/metabolismo , Animais , Anticorpos/metabolismo , Contagem de Células , Imunofluorescência , Humanos , Hibridização In Situ , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Bulbo Olfatório/citologia , Mucosa Olfatória/citologia , Receptores Odorantes/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...